Johnstone Laboratory Resource

Concentrations of Aqueous Acid and Base Solutions

Many laboratory reagents are commonly supplied as aqueous solutions in "concentrate form" with the concentration provided as a wt\%. This situation most commonly arises because of how these reagents are prepared. For instance, no one probably wants an $\mathrm{HCl}_{(\text {aq) }}$ solution that is specifically at $37 \mathrm{wt} \%$ (12.18 $\mathrm{M})$, but this is the highest concentration that is readily obtainable by dissolving $\mathrm{HCl}_{(\mathrm{g})}$ in water under ambient conditions. Note that higher concentrations are possible. Below are the molar concentrations of common "concentrated" aqueous reagents whose concentrations are usually specified in wt\% along with the densities used to calculate those concentrations.

Reagent	$\mathbf{w t \%}$	Density	Molarity
HCl	37%	1.18	12.2
HF	49%	1.19	28.9
HNO_{3}	70%	1.41	15.6
$\mathrm{H}_{3} \mathrm{PO}_{4}$	85%	1.71	14.8
HClO_{4}	70%	1.67	11.7
$\mathrm{H}_{2} \mathrm{SO}_{4}$	98%	1.84	18.4
NH_{3}	25%	0.91	13.4
NH_{3}	28%	0.90	14.5
NH_{3}	35%	0.88	18.1
$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{* *}$			

** Care should be taken with all of these concentrations because the wt\% of these reagents as supplied is often approximate. Particular care should be taken with $\mathrm{H}_{2} \mathrm{O}_{2}$ because it decomposes slowly over time.

